9 Group 2, the alkaline earth metals Checklist

Group 2, the alkaline earth metals

Specification reference	Checklist questions	
3.2.2	Can you explain the trends in atomic radius, first ionisation energy and melting point of the elements Mg-Ba?	
3.2.2	Can you explain the trends in atomic radius and first ionisation energy?	
3.2.2	Can you explain the melting point of the elements in terms of their structure and bonding?	
3.2.2	Can you describe reactions of the elements Mg–Ba with water?	
3.2.2	Can you describe the use of magnesium in the extraction of titanium from TiCl ₄ ?	
3.2.2	Can you explain the relative solubilities of the hydroxides of the elements Mg–Ba in water?	
3.2.2	Can you explain how Mg(OH) ₂ is sparingly soluble?	0
3.2.2	Can you describe the use of Mg(OH) ₂ in medicine and of Ca(OH) ₂ in agriculture?	
3.2.2	Can you describe the use of CaO or CaCO ₃ to remove SO ₂ from flue gases?	
3.2.2	Can you explain how BaSO ₄ is insoluble?	
3.2.2	Can you describe the use of acidified BaCl ₂ solution to test for sulfate ions?	
3.2.2	Can you describe the use of BaSO ₄ in medicine?	

Group 7, the halogens

Specification reference	Checklist questions	
3.2.3.1	Can you describe trends in electronegativity and boiling point of the halogens?	
3.2.3.1	Can you explain the trend in electronegativity?	
3.2.3.1	Can you explain the trend in the boiling point of the elements in terms of their structure and bonding?	
3.2.3.1	Can you describe the trend in oxidising ability of the halogens down the group, including displacement reactions of halide ions in aqueous solution?	
3.2.3.1	Can you describe the trend in reducing ability of the halide ions, including the reactions of solid sodium halides with concentrated sulfuric acid?	
3.2.3.1	Can you describe the use of acidified silver nitrate solution to identify and distinguish between halide ions?	
3.2.3.1	Can you describe the trend in solubility of the silver halides in ammonia?	
3.2.3.1	Can you explain why silver nitrate solution is used to identify halide ions?	
3.2.3.1	Can you explain why the silver nitrate solution is acidified?	
3.2.3.1	Can you explain why ammonia solution is added?	
3.2.3.2	Can you describe the reaction of chlorine with water to form chloride ions and chlorate(I) ions?	
3.2.3.2	Can you describe the reaction of chlorine with water to form chloride ions and oxygen?	

Alkanes

Specification reference	Checklist questions	
3.3.2.1	Can you describe alkanes as saturated hydrocarbons?	
3.3.2.1	Can you explain that petroleum is a mixture consisting mainly of alkane hydrocarbons that can be separated by fractional distillation?	
3.3.2.2	Can you describe how cracking involves breaking C-C bonds in alkanes?	
3.3.2.2	Can you describe how thermal cracking takes place at high pressure and high temperature and produces a high percentage of alkenes?	
3.3.2.2	Can you describe how catalytic cracking takes place at a slight pressure, high temperature and in the presence of a zeolite catalyst and is used mainly to produce motor fuels and aromatic hydrocarbons?	
3.3.2.2	Can you explain the economic reasons for cracking alkanes?	
3.3.2.3	Can you explain how alkanes are used as fuels?	
3.3.2.3	Can you explain that combustion of alkanes and other organic compounds can be complete or incomplete?	
3.3.2.3	Can you describe how the internal combustion engine produces a number of pollutants including NO _x , CO, carbon, and unburned hydrocarbons?	
3.3.2.3	Can you describe how gaseous pollutants from internal combustion engines can be removed using catalytic converters?	
3.3.2.3	Can you describe how the combustion of hydrocarbons containing sulfur leads to sulfur dioxide that causes air pollution?	
3.3.2.3	Can you explain why sulfur dioxide can be removed from flue gases using calcium oxide or calcium carbonate?	

Halogenoalkanes

Specification reference	Checklist questions	
3.3.3.1	Can you explain how halogenoalkanes contain polar bonds?	
3.3.3.1	Can you explain how halogenoalkanes undergo substitution reactions with the nucleophiles OH ⁻ , CN ⁻ and NH ₃ ?	
3.3.3.1	Can you outline the nucleophilic substitution mechanisms of these reactions?	
3.3.3.1	Can you explain why the carbon–halogen bond enthalpy influences the rate of reaction?	
3.3.3.2	Can you describe the concurrent substitution and elimination reactions of a halogenoalkane (for example, 2-bromopropane with potassium hydroxide)?	
3.3.3.2	Can you explain the role of the reagent as both nucleophile and base?	0
3.3.3.2	Can you outline the mechanisms of the concurrent substitution and elimination reactions of a halogenoalkane?	
3.3.3.3	Can you explain that ozone, formed naturally in the upper atmosphere, is beneficial because it absorbs ultraviolet radiation?	
3.3.3.3	Can you describe how chlorine atoms are formed in the upper atmosphere when ultraviolet radiation causes C–Cl bonds in chlorofluorocarbons (CFCs) to break?	
3.3.3.3	Can you describe how chlorine atoms catalyse the decomposition of ozone and contribute to the hole in the ozone layer?	
3.3.3.3	Can you explain that results of research by different groups in the scientific community provided evidence for legislation to ban the use of CFCs as solvents and refrigerants?	0

Alkenes

Specification reference	Checklist questions	
3.3.4.1	Can you explain that alkenes are unsaturated hydrocarbons?	
3.3.4.1	Can you describe how bonding in alkenes involves a double covalent bond, a centre of high electron density?	
3.3.4.2	Can you explain that electrophilic addition reactions of alkenes with HBr, H_2SO_4 , and Br_2 ?	
3.3.4.2	Can you describe the use of bromine to test for unsaturation?	
3.3.4.2	Can you describe the formation of major and minor products in addition reactions of unsymmetrical alkenes?	
3.3.4.2	Can you outline the mechanisms for these reactions?	
3.3.4.2	Can you explain the formation of major and minor products by reference to the relative stabilities of primary, secondary and tertiary carbocation intermediates?	

Alcohols

Specification reference	Checklist questions	
3.3.5.1	Can you describe how alcohols are produced industrially by hydration of alkenes in the presence of an acid catalyst.	
3.3.5.1	Can you describe how ethanol is produced by the reaction of ethene and steam using a phosphoric acid catalyst?	
3.3.5.1	Can you describe how ethanol is produced industrially by fermentation of glucose? The conditions for this process.	
3.3.5.1	Can you explain the conditions for the industrial production of ethanol?	
3.3.5.1	Can you describe how ethanol produced industrially by fermentation is separated by fractional distillation and can then be used as a biofuel?	
3.3.5.1	Can you explain the economic and environmental advantages and disadvantages of fermentation compared with the industrial production from ethene?	
3.3.5.1	Can you explain the meaning of the term biofuel?	
3.3.5.2	Can you explain how alcohols are classified as primary, secondary and tertiary?	
3.3.5.2	Can you explain that primary alcohols can be oxidised to aldehydes which can be further oxidised to carboxylic acids?	
3.3.5.2	Can you explain that secondary alcohols can be oxidised to ketones?	
3.3.5.2	Can you explain that tertiary alcohols are not easily oxidised?	
3.3.5.2	Can you describe acidified potassium dichromate(VI) as a suitable oxidising agent?	

Organic analysis

Specification reference	Checklist questions	
3.3.6.1	Can you describe the reactions of functional groups listed in the specification?	
3.3.6.1	Can you identify the functional groups using reactions in the specification?	
3.3.6	Have you carried out practical tests for alcohol, aldehyde, alkene, and carboxylic acid?	
3.3.6.2	Can you explain how mass spectrometry can be used to determine the molecular formula of a compound?	
3.3.6.2	Can you use precise atomic masses and the precise molecular mass to determine the molecular form?	
3.3.6.3	Can you explain how bonds in a molecule absorb infrared radiation at characteristic wavenumbers?	
3.3.6.3	Can you describe how 'fingerprinting' allows identification of a molecule by comparison of spectra?	
3.3.6.3	Can you use infrared spectra and the Chemistry Data Booklet to identify particular bonds, and therefore functional groups, and also to identify impurities?	

Atomic structure

Specification reference	Checklist questions	
3.1.1.1	Can you explain that knowledge and understanding of atomic structure has evolved over time?	
3.1.1.1	Can you describe how protons, neutrons, and electrons have relative charge and relative mass?	
3.1.1.1	Can you describe that an atom consists of a nucleus, with protons and neutrons that are surrounded by electrons?	
3.1.1.2	Can you identify A as mass number and Z as atomic (proton) number?	
3.1.1.2	Can you determine the number of fundamental particles in atoms and ions using mass number, atomic number, and charge?	
3.1.1.2	Can you explain the existence of isotopes?	
3.1.1.2	Can you explain the principles of a simple time of flight (TOF) mass spectrometer?	
3.1.1.2	Can you explain that the mass spectrometer gives accurate information about relative isotopic mass and the relative abundance of isotopes?	
3.1.1.2	Can you describe how mass spectrometry can be used to identify elements?	
3.1.1.2	Can you describe how mass spectrometry can be used to determine relative molecular mass?	
3.1.1.2	Can you interpret simple mass spectra of elements?	0
3.1.1.2	Can you calculate relative atomic mass from isotopic abundance?	

Bonding

Specification reference	Checklist questions	
3.1.3.1	Can you describe how ionic bonding involves electrostatic attraction between oppositely charged ions in a lattice?	
3.1.3.1	Do you know the formulas of compound ions, for example sulfate, hydroxide, nitrate, carbonate, and ammonium?	
3.1.3.1	Can you predict the charge on a simple ion using the position of the element in the Periodic Table?	
3.1.3.1	Can you construct formulas for ionic compounds?	
3.1.3.2	Can you describe how a single covalent bond contains a shared pair of electrons?	
3.1.3.2	Can you describe how multiple bonds contain multiple pairs of electrons?	
3.1.3.2	Can you describe how a co-ordinate (dative covalent) bond contains a shared pair of electrons with both electrons supplied by one atom?	
3.1.3.2	Can you represent a covalent bond using a line?	
3.1.3.2	Can you represent a co-ordinate bond using an arrow?	
3.1.3.3	Can you explain that metallic bonding involves attraction between delocalised electrons and positive ions arranged in a lattice?	
3.1.3.4	Can you identify and describe the four types of crystal structure – ionic, metallic, macromolecular (giant covalent) and molecular?	
3.1.3.4	Can you identify and describe structures of the following crystals as examples of ionic, metallic, macromolecular and molecular crystal structure – diamond, graphite, ice, iodine, magnesium, sodium chloride?	

Energetics

Specification reference	Checklist questions	
3.1.4.1	Can you explain that reactions can be endothermic or exothermic?	
3.1.4.1	Can you explain that enthalpy change (ΔH) is the heat energy change measured under conditions of constant pressure?	
3.1.4.1	Can you explain that standard enthalpy changes refer to standard conditions, i.e. 100 kPa and a stated temperature (for example, ΔH_{298})?	
3.1.4.1	Can you define standard enthalpy of combustion ($\Delta_c H$)?	
3.1.4.1	Can you define standard enthalpy of formation ($\Delta_t H$)?	
3.1.4.2	Can you explain that heat change, q , in a reaction is given by the equation $q = mc\Delta T$ where m is the mass of the substance that has a temperature change ΔT and a specific heat capacity c ?	
3.1.4.2	Can you use the equation $q = mc\Delta T$ to calculate the molar enthalpy change for a reaction?	
3.1.4.2	Can you use the equation $q = mc\Delta T$ in related calculations?	
3.1.4	Have you carried out a practical activity to measure an enthalpy change?	0
3.1.4.3	Can you explain Hess's law?	0
3.1.4.3	Can you use Hess's law to perform calculations, including calculation of enthalpy changes for reactions from enthalpies of combustion or from enthalpies of formation?	
3.1.4.4	Can you describe mean bond enthalpy?	0

Kinetics

Specification reference	Checklist questions	
3.1.5.1	Can you explain that reactions can only occur when collisions with sufficient energy take place between particles energy?	0
3.1.5.1	Can you define the term activation energy?	
3.1.5.1	Can you explain why most collisions do not lead to a reaction?	
3.1.5.2	Can you explain the Maxwell–Boltzmann distribution of molecular energies in gases?	
3.1.5.2	Can you draw and interpret distribution curves for different temperatures?	0
3.1.5.3	Can you define the term rate of reaction?	
3.1.5.3	Can you explain the qualitative effect of temperature changes on the rate of reaction?	
3.1.5.3	Can you use the Maxwell–Boltzmann distribution to explain why a small temperature increase can lead to a large increase in rate?	
3.1.5	Have you carried out a practical to investigate how the rate of a reaction changes with temperature?	0
3.1.5.4	Can you describe the qualitative effect of changes in concentration on collision frequency?	
3.1.5.4	Can you describe the qualitative effect of a change in the pressure of a gas on collision frequency?	
3.1.5.4	Can you explain how a change in concentration or a change in pressure influences the rate of a reaction?	

Equilibria

Specification reference	Checklist questions	
3.1.6	Can you explain that many chemical reactions are reversible?	
3.1.6	Can you explain that, in a reversible reaction at equilibrium, forward and reverse reactions proceed at equal rates?	
3.1.6	Can you explain that, in a reversible reaction at equilibrium, the concentrations of reactants and products remain constant?	
3.1.6	Can you explain that, in a reversible reaction at equilibrium, the equilibrium constant K_c is deduced from the equation for a reversible reaction?	
3.1.6	Can you describe Le Chatelier's principle?	
3.1.6	Can you explain that Le Chatelier's principle can be used to predict the effects of changes in temperature, pressure and concentration on the position of equilibrium in homogeneous reactions?	
3.1.6	Can you explain that a catalyst does not affect the position of equilibrium?	
3.1.6	Can you use Le Chatelier's principle to predict qualitatively the effect of changes in temperature, pressure and concentration on the position of equilibrium?	
3.1.6	Can you explain why, for a reversible reaction used in an industrial process, a compromise temperature and pressure may be used?	

7 Oxidation, reduction, and redox reactions Checklist

Oxidation, reduction, and redox reactions

Specification reference	Checklist questions	
3.1.7	Can you explain that oxidation is the process of electron loss and oxidising agents are electron acceptors?	
3.1.7	Can you explain that reduction is the process of electron gain and reducing agents are electron donors?	
3.1.7	Can you recall and use the rules for assigning oxidation states?	
3.1.7	Can you work out the oxidation state of an element in a compound or ion from the formula?	
3.1.7	Can you write half-equations identifying the oxidation and reduction processes in redox reactions?	
3.1.7	Can you combine half-equations to give an overall redox equation?	

Periodicity

Specification reference	Checklist questions	
3.2.1.1	Can you explain that an element is classified as s, p, d or f block according to its position in the Periodic Table, which is determined by its proton number?	
3.2.1.2	Can you explain the reasons for periodic trends in terms of the structure of and bonding in the elements?	
3.2.1.2	Can you explain periodic trends in atomic radius and first ionisation energy?	
3.2.1.2	Can you explain the melting point of the elements in terms of their structure and bonding?	